Economic Development, Jobs, Transport and Resources

Improving flow on border-check irrigation bays

Mike Morris Amjed Hussain Faith Githui Tony Cook

Irrigation flow rate

How much water can we save by increasing bay inflow flow rates beyond recommended practice (i.e. > 0.2 ML/d/m)?

Economic Development, Jobs, Transport and Resources

AGRICULTURE VICTORIA

Are there water savings in practice?

A range of GMID farms, soils and crops

No evidence of water savings

Site	Location	Soil Group	Soil type	Crop	Number of bays	Flow rate (ML/d/m)	Irrigations
1	Kyabram	3	Lemnos loam	Perennial pasture	2	0.08-0.11 0.12-0.16	10 10
2	Katunga	2	Cobram loam	Lucerne	2	0.16 0.36	11 11
3	Strathmerton	3	Moira Ioam	Perennial pasture	2	0.17 0.33	14 14
4	Waaia	3	Moira Ioam	Annual pasture	2	0.89 1.06	2 2
			Moira Ioam	Annual pasture	2	0.08-0.21 0.31	4 3
5	Katunga	2	friable phase	Pre- emergence	2	0.28 0.30	1 1
6	Byrneside	2	Shepparton fine sandy loam	Annual pasture	2	0.37-0.61 0.41-0.50	3 3
7	Mooroopna	2	Shepparton fine sandy loam	Perennial pasture	2	0.10-0.17 0.29-0.30	4 4
		3 Lemnos loam		Lucerne	2	0.14-0.16 0.14-0.26	2 3
8	Harston		Lemnos loam	Pre- emergence	2	0.12 0.22	1 1

Are there water savings in theory?

Lucerne on a Group 2 soil

Deep

Perennial pasture on a Group 3 soil

Dairy Australia

AGRICULTURE VICTORIA

Ponding duration

- Is dependent on surface drainage processes
- Is strongly influenced by bay surface topography

The issue

Long and spatially variable duration of surface ponding

- Plant stress
- Reduced productivity
- Imprecision

WUE (t DM/ha/ML)								
Ponding duration	Irrigation frequency (mm ET _c -R)							
(h)	50	80	120					
4	2.4	1.6	1.3					
12	1.5	1.5	1.3					
24	1.6	1.1	1.1					

Dunbabin, J.S., Hume, I.H., Ireson, M.E., 1997. Effects of irrigation frequency and transient waterlogging on the production of a perennial ryegrass–white clover pasture. Australian Journal of Experimental Agriculture 37, 165–171.

ANUGA adapted for surface irrigation

The ANUGA model:

- represents irregular surfaces with a triangular mesh
- propagates water depth and momentum through the mesh
- can simulate wetting and drying of the surface

Our most important modification to ANUGA was implementation of an infiltration operator, based on the empirical Kostiakov-Lewis equation.

Model calibration

Comparisons of ANUGA against observed data from 0.0 both unmodified and modified bay surfaces

Conclusions

- Satisfactory performance
- Suitable for ranking bay surface designs

Example ANUGA output

Economic Development, Jobs, Transport and Resources

Surface water ponding duration with bay surface modification

Bay surface design examples

Criteria

- Each surface was constrained to channel outlet and drain elevations
- Cut and fill volumes must balance

Dairy Australia

Economic Development, Jobs, Transport and Resources

Conclusions

Shallow surface drains consistently outperformed other bay designs

The "trench" design improved on the unmodified bay without requiring shallow surface drains

A bay with surface drains

Economic Development, Jobs, Transport and Resources

Next steps

- The important thing is whether modified bay surfaces can improve production per ML
- Establishment of field experiments to test bay modifications is now under way

