

Double cropping system

Murray DAIRY Dairy Australia

- Pushing the system
 - Return per hectare and per ML
 - Time
 - Nutrition
 - Seasons
 - Weed Burden
 - Soil type Mostly structure
- Soil pits

Effective Cation Exchange Capacity (cmol+/kg)

Sodium % cations

Four 0-10 Four 23-60

45

One 0-10 One 10-45 Two 0-10 Two 10-23 Three 0-10 Three 12-

Sites One and Two

- Shallow topsoil
 - Sandy clay loam over heavy clay
- Deeper topsoil
 - Coarse sandy clay loam to depth

Soil constraints – Rotations

Bring back wetting drying cycle How rotations might help

- Cereal to dry profile out
 - Force roots to proliferate deeper
 - Dry soil out
 - Crack soil
 - OM falls through cracks

Soil constraints – Rotations

Root Depth – cereals will forage deep!

Soil Constraints - Mechanical

Compaction

Strategic ripping??

Not all soils will respond

Subsoil Sodicity –

- Poor internal drainage
- How do we stabilise sodic subsoil?

Soil Constraints - SMM

Murray DAIRY Dairy Australia

When not to water!

- Better than shovel
- Gives better insight as to crop water use.

Soil management Summary

Get roots deeper into the soil

Dig a hole and assess

Soil moisture probes

End game: Improve WUE

- Stored Soil moisture
- Rainfall
- Irrigation

Agronomy: what limits Yields?

Yield Potential

- Lack of moisture
- Low fertility
- Poor Soil Structure
- Poor establishment
- Disease and Insects
- Weeds

Aim to control what we can - MANAGEMENT

Topics

Paddock prep and planting for cereals

- Soil Constraints
- Weed management
- Pest Management
- Crop establishment

Nutrient considerations from 2016

Nitrogen - wet conditions

Implications of rotations.

Soil constraints

- Eliminate topsoil issues
- Drainage a must for high yielding crops
- Where was the crop poor last year in the wet?
- NDVI can show hidden plant stress
- Ground truth
- If not wet, what else is it?

Your Levy at Work

Soil Constraints

Investigate other limitations

- Soil Test
 - pH
 - EC
 - Sodicity
 - Nutrient limitation

Tips for watering up

Murray DAIRY Dairy Australia

Seed with good vigour

Sow Shallow

Water on and off quick

Start with dry profile

No rain for at least 7-14 days

Select a site not prone to weeds

Not after 1st April

Seeding

Target plants per square metre

- Aim to establish 160-170 plants per square metre
- Aim for 675 heads per square metre*.
 - Note varietal and sowing time variability, this is a guide
- Sowing rate = desired plants per m2 x seed weight/ % crop establishment (field loss)
- Then divide by seed germination

Seed test results - wheat

RESULTS:

GERMINATION (%)

Healthy seedlings	Deformed/delayed seedlings	Ungerminated seeds	
96	0		

Test method: 20oC day/ 15oC, 12 hr photoperiod. Assessment at 5 days. (Please note that the germination result does not indicate the vigour of the seed but germination under ideal conditions.)

VIGOUR (%)

Healthy seedlings	Deformed/delayed seedlings	Ungerminated seeds	
92	6		

Test method: Seeds sown at set depth & vernalised 5-8°C followed by 20° C / 15° C normal growth. Assess at 7 days.

1000 Seed Weight (g)

34.40

Seeding rates

Oats

Target Pop'n	Actual	Stems/m ²	Stems/plant	DM t/ha	Stem dia
	Pop'n				(mm)
120	102	521	5.11	22.26	4.3
160	136	512	3.76	17.83	4.1
200	170	533	3.14	18.13	3.4
240	202	483	2.39	17.48	3.5

Weed Management - Rotational

Understand the enemy! - History
Know the problem weeds from previous years
How Rotations might help

- Broadleaf weeds can be controlled in cereal
- Grass weeds controlled in pulse eg vetch, clover

Weed management - Cultural tips

Ground Cover

- Sow when soil is still warm.
- Narrower row spacings cover the ground quicker
- Sow East West where possible

Sow cleaner paddocks first

Ensile/hay

Weed Management - Herbicides

Knockdowns

- Pre sowing
- Probably need more in tank than just Roundup
 - Knockdown Spikes
- Mix it up, don't always use Roundup
- Double knock

Weed Management - Herbicides

Pre emergents

- Kill weeds at or shortly after emergence
- Key factors for success
 - Position of weed seed (cultivation)
 - Stubble
 - Moisture availability
 - Crop tolerance
 - Seeding equipment

Weed Management - Herbicides

Post emergents

- Grass selectives unreliable in cereals
- BLW selectives Good options in cereals
- Work best when weeds are small
- Very few options in pulses for BLW's
- Be careful of Plant backs

End game?

Good preparation for future Pulse crops

Pest Management - RWA

Russian wheat aphid

- Significant new pest in Australia
- Inject salivary toxins during feeding
- Symptoms as early as 7 days
 - White & purple longitudinal streaks
 - Curled leaves
 - Stunted growth
 - Reduced photosynthetic activity

Pest management - RWA

Avoid infestation early after emergence

- Insecticide seed dressings
 - Imidacloparid*, Thiamethoxam**

Chlorpyrifos and Pirimicarb have permits

Beneficials – ladybirds, lacewings and fungi

Nutrient

Nutrient removed from wheat silage per DMT at Booting

- Nitrogen 20-25kg
- Phosphorus 1.8 3kg
- Potassium 10 15kg
- Sulphur 2 3kg

Work off Soil Test and History

Nutrient - Nitrogen

Nitrogen Supply is a consequence of

- Temperature
- Moisture
- Soil aeration
- Soil Organic Carbon

N supply can vary a lot!

Fertilise

Nitrogen considerations from 2016

Significant N losses where it got quite wet.

Yields were high

Spring 2016 was a huge year for mineralisation.

High yields, mean high nutrient removal

This year, we need to watch N levels, they may be lacking – low mineral N

Last years pulse may not have fixed much N

N RICH STRIP!

Pulses – N Supply

Murray DAIRY Dairy Australia

N fixation related to

- Effective N fixation of the pulse crop
 - Colonisation of rhizobia
 - Soil conditions pH
 - Moly availability
 - Herbicide residues
- Biomass of pulse crop
 - 16.6kg of N fixed or DMt produced*

It can be quite wet and a response is still possible from urea!

Summary

High yields are no accident
Timeliness and care has a huge impact on yield
Get the basics right

- Lime and/or gypsum
 - Control of weeds and pests

Use tools available – NDVI then ground truth

N rich strip

For more information: www.acceleratingchangeproject.com

