ACCELERATING CHANGE WORKSHOP 2. SUCCESSFUL SUMMER CROPPING. #### Introduction. ## Literature: - Riverine plains - Alluvial and aeolian - Mapped by Smith (1945), Johnson (1950), Churchward & Flint (1956). - Butler (1973) map. - MIL Map #### Soils: - 1. Red Brown Earths: - Deep phase deep topsoil - Shallow phase shallow topsoil. - 2. Transitional Red Brown Earths the in-between soil type. Shallow topsoils over clays. - 3. Cracking Clays: - Lighter phases - Heavier phases - 4. Sands. Occur in conjunction with prior stream traces. #### Agenda - Four key areas for discussion at each site: - 1. Soil types, variability & impact on production. - Regional variability - Within paddock - Within irrigation bay. - 2. Soil texture and available water. - Horizons - Depths - Textures - Impedances - Effective Root Zone Depth - Available Water Content. - 3. Soil amelioration and preparation for summer cropping. - 4. Summer crop nutrition. #### **SOIL TESTING FOR LAND CAPABILITY PARAMETRES.** Land capability parameters providing background information on the quality of soil for agriculture and the likely behaviour and performance include EC, pH, slaking and dispersion. The purpose of the tests and their relativity for providing general basis behind soil condition are included in the table below. | Test Performed | Test Method | Purpose of the Test | |---|---|--| | Electrical
conductivity EC 1:5 &
ECe (dS/m) | Rayment and Higginson, 1992.
Slavich and Petterson, 1993.
Weatherby, 1992. | Soil salinity criteria, changes in soil salt with depth, match plant root growth and depth of soil utilised by the crop with subsoil salinity, surface and profile drainage status, zones of maximum clay content. | | Soil pH (water) | Rayment and Higginson, 1992. | Soil pH, acidity and/or alkalinity, soil growing conditions | | Slaking class | Australian Standards, 1980 | Assess soil behaviour when wetted by rainfall, aggregate stability, identify if the soil has sufficient organic matter to limit breakdown of aggregates and deterioration of soil structure. | | Emerson dispersion class | Emerson, 1967; Australian
Standards, 1980; Charman (1978);
Charman & Murphy (1991). | Assess clay dispersion when wet by rainfall, soil stability to wetting, likely/unlikely presence of sodic soil, likelihood of soil crusting. | Soil test data for land capability parameters is included in the following table. MURRAY DAIRY. SOIL TEST RESULTS FOR LAND CAPABILITY ASSESSMENT PARAMETRES. #### JANUARY 2017. | Sample
Number | Site No. | Sample Name | Depth (cm) | EC 1:5
Soil/Water
(uS/cm) | EC 1:5
Soil/Water
(dS/m) | Texture | Texture
Factor | EC 1:5 Soil/Water
(dS/m) Sat Ext. | Soil pH
(H ² O) | Slaking
Class | Emerson
Dispersion
Class | |------------------|----------|--------------------|------------|---------------------------------|--------------------------------|---------|-------------------|--------------------------------------|-------------------------------|------------------|--------------------------------| | 1 | Site 1 | Holm. MD1. A1 | 0-10 | 210.0 | 0.210 | SCL | 10 | 2.1 | 6.30 | 2 | 5 | | 2 | Site 1 | Holm. MD1. B1 | 10-45 | 170.0 | 0.170 | MHC | 7 | 1.2 | 6.90 | 2 | 3 | | 3 | Site 1 | Holm. MD1. B2 | 45-80 | 172.2 | 0.172 | MHC | 7 | 1.2 | 8.05 | 2 | 4 | | | | | | | | | | | | | | | 4 | Site 2 | Holm. MD2. A1 | 0-10 | 200.0 | 0.200 | KSCL | 10 | 2.0 | 5.80 | 2 | 5 | | 5 | Site 2 | Holm. MD2. A2 | 10-23 | 110.0 | 0.110 | KSCL | 10 | 1.1 | 6.10 | 2 | 2 (2) | | 6 | Site 2 | Holm. MD2. A3 | 23-58 | 93.4 | 0.093 | KSCL | 10 | 0.9 | 5.06 | 2 | 5 | | 7 | Site 2 | Holm. MD2. B1 | 58-90 | 111.8 | 0.112 | LSC | 9 | 1.0 | 4.96 | 2 | 2 (1) | | | | | | | | | | | | | | | 8 | Site 3 | Singleton. MD3. A1 | 0-12 | 270.0 | 0.270 | KSL | 11 | 3.0 | 7.20 | 2 | 5 | | 9 | Site 3 | Singleton. MD3. A2 | 12-32 | 70.0 | 0.070 | KSL | 11 | 0.8 | 6.90 | 3 | 2 (1) | | 10 | Site 3 | Singleton. MD3. B1 | 32-64 | 191.6 | 0.192 | MC (S) | 7 | 1.3 | 6.84 | 2 | 1 | | 11 | Site 3 | Singleton. MD3. B2 | 64-85 | 330.0 | 0.330 | MC (S) | 7 | 2.3 | 8.32 | 2 | 1 | | | | | | | | | | | | | | | 12 | Site 4 | Singleton. MD4. A1 | 0-10 | 140.0 | 0.140 | LC (S) | 9 | 1.3 | 6.80 | 2 | 5 | | 13 | Site 4 | Singleton. MD4. B1 | 10-23 | 87.2 | 0.087 | LC (S) | 9 | 0.8 | 6.35 | 2 | 2 (1) | | 14 | Site 4 | Singleton. MD4. B2 | 23-60 | 70.0 | 0.070 | MHC | 7 | 0.5 | 6.20 | 3 | 1 | | 15 | Site 4 | Singleton. MD4. B3 | 60-90 | 278.0 | 0.278 | MHC | 7 | 1.9 | 7.69 | 2 | 2 (1) | #### INTERPRETATION. #### SOIL SALINITY - ECe SATURATION EXTRACT. 0-2.0 dSm. Low lever of soil salinity. 2.0-4.0 dS/m. Moderate EC. Sensitive species will be effected. 4.0-6.0 dS/m. Moderate - high EC. Salt tolerant species suited only. 6.0-10.0 dS/m. High EC. 10.0-13.0 dS/m. Very high EC. >13 dS/m. Extreme EC. Reference: Rayment & Higginson, 1992; University of Melbourne, 2005. TEXTURE FACTORS. QLD Dept Env & NRM 'Salinity Management Handbook' (2011). Soil Description Handbook' Weatherby (1992). SOIL PH (WATER). Reference: Rayment & Higginson (1992); University of Melbourne (2005). ## SOIL SLAKING CLASS. | Slaking
Class | Interpretation | |------------------|---| | 0 | No change | | 1 | Aggregate breaks open but remains intact | | 2 | Aggregate breaks down into smaller aggregates | | 3 | Aggregate breaks down completely into sand grains | Reference: Australian Standards (1980). ## SOIL DISPERSION CLASS. | Emerson
Class | Interpretation | | | | | | | |------------------|---|-------------|--|--|--|--|--| | 1 | Slaking, complete dispersion | | | | | | | | 2 | Slaking, partial dispersion | | | | | | | | 3 | Slaking, slight dispersion after remoulding and immersing in water | | | | | | | | 4 | Slaking, nil dispersion, carbonate or gypsum present | | | | | | | | 5 | Slaking, carbonate or gypsum absent, remould, reshake, dispersion | | | | | | | | 6 | Slaking, carbonate or gypsum absent, remould, reshake, non-dispersive | | | | | | | | 7 | No slaking, swelling, nil dispersion | | | | | | | | 8 | No slaking, swelling | | | | | | | | | Orange: Dispersive soil. Reference: Emerson (1967), Australian Stand | ards (1980) | | | | | | ## SOIL TEST SPREADSHEET – COMPREHENSIVE SOIL TEST RESULTS. # MURRAY DAIRY WORKSHOP 2. COMPREHENSIVE SOIL TEST RESULTS. JANUARY 2017. | Sample Name | Units | Site 1. Holm. | Site 1. Holm. | |--------------------------|--------------------|---------------|---------------| | | | A1 Horizon. | B1 Horizon. | | Soil pH | Water | 6.3 | 6.9 | | Soil pH | CaCl ₂ | 5.8 | 6.2 | | Conductivity | dS/m ⁻¹ | 0.210 | 0.170 | | Conductivity | EC Sat Ext. | 1.3 | 1.1 | | Chloride | ppm | 15 | 13 | | Organic Carbon | % | 1.4 | 0.5 | | Nitrate Nitrogen | mg/kg | 62.0 | 42.0 | | Ammonium Nitrogen | mg/kg | 4 | 3 | | Colwell P | mg/kg | 43 | 8 | | Phosphorus Buffer Index | | 95 | 110 | | Phos Env Risk | | 46 | 23 | | Sulphate Sulphur | mg/kg | 14.5 | 19.3 | | CEC | cmol/kg | 9.50 | 9.70 | | Exc. Calcium | cmol/kg | 3.9 | 8.4 | | Exc. Magnesium | cmol/kg | 0.17 | 0.29 | | Exc. Sodium | cmol/kg | 0.80 | 0.91 | | Exc. Potassium | cmol/kg | 310 | 350 | | Aluminium KCI | cmol/kg | <0.1 | <0.1 | | Aluminium Saturation | % | <1.0 | <1.0 | | Calcium Sum of Cations | % | 66 | 50 | | Magnesium Sum of Cations | % | 27 | 43 | | Sodium Sum of Cations | % | 1.2 | 1.5 | | Potassium Sum of Cations | % | 5.5 | 4.7 | | Ca:Mg Ratio | | 2.4 | 1.2 | | Zinc | ppm | 0.8 | 0.1 | | Copper | ppm | 1.8 | 1.7 | | Iron | ppm | 69 | 33 | | Manganese | ppm | 37 | 19 | | Boron | ppm | 1.3 | 2.0 | | e 2. Holm. | Site 2. Holm. | Site 3.
Singleton. | Site 3.
Singleton. | | |------------|---------------|-----------------------|-----------------------|--| | 1 Horizon. | A2 Horizon. | A1 Horizon. | A2 Horizon. | | | 5.8 | 6.1 | 7.2 | 6.9 | | | 5.3 | 5.4 | 6.7 | 5.9 | | | 0.200 | 0.110 | 0.270 | 0.070 | | | 1.2 | 0.7 | 2.2 | 0.4 | | | <10 | <10 | 60 | 14 | | | 1.4 | 0.7 | 1.3 | 0.6 | | | 73.0 | 31.0 | 78.0 | 7.0 | | | 3 | 1 | 2 | <1 | | | 55 | 14 | 170 | 14 | | | 88 | 79 | 66 | 44 | | | 23 | 15 | 33 | 22 | | | 11.9 | 12 | 9.7 | 5.4 | | | 8.00 | 7.30 | 6.60 | 3.40 | | | 2.9 | 3.8 | 1.7 | 1.3 | | | 0.09 | 0.10 | 0.38 | 0.37 | | | 0.89 | 0.89 | 1.10 | 0.31 | | | 350 | 350 | 420 | 120 | | | <0.1 | <0.1 | <0.1 | <0.1 | | | <1.0 | <1.0 | <1.0 | <1.0 | | | 67 | 61 | 68 | 63 | | | 25 | 31 | 17 | 25 | | | 0.8 | 0.8 | 3.9 | 6.8 | | | 7.4 | 7.4 | 11.0 | 5.7 | | | 2.8 | 1.9 | 3.9 | 2.6 | | | 1.6 | 0.3 | 4.7 | 0.3 | | | 1.8 | 1.4 | 1.2 | 1.0 | | | 110 | 52 | 84 | 38 | | | 35 | 27 | 12 | 19 | | | | | | | | | A1 Horizon. | B1 Horizon. | |-------------|-------------| | 6.8 | 6.2 | | 6.3 | 5.4 | | 0.23 | 0.11 | | 1.4 | 0.7 | | 29 | 16 | | 2.1 | 0.9 | | 29 | 18 | | 3 | 1 | | 260 | 62 | | 130 | 96 | | 2 | 0.6 | | 58 | 23 | | 14.4 | 7.8 | | 9.5 | 4.4 | | 2.9 | 2.6 | | 0.36 | 0.35 | | 1.6 | 0.44 | | <0.1 | <0.1 | | <1.0 | <1.0 | | 66 | 56 | | 20 | 34 | | 2.5 | 4.5 | | 11.0 | 5.6 | | 3.3 | 1.7 | | 5.0 | 0.7 | | 2.8 | 2.3 | | 180 | 130 | | 27 | 67 | | 1.7 | 1.3 | | | | Site 4. Singleton. Site 4. Singleton. #### INTERPRETATION: #### **EXCHANGEABLE CATION DATA IN GRAPHS.** # SITE 1. MAL HOLM. ## **Soil Profile Photographs:** Soil Type: Red-Brown Earth / Transitional Red Brown Earth. Duplex soil. ## **Soil Profile Description:** | Horizon | Depth
(cm) | Texture | Structure | Presence
of Lime | Plant
Root
Score /10 | Available
Water at 200
kPa soil (Sat)
mm. | Profile Notes. | |----------------|---------------|--------------------------|---|---------------------|----------------------------|--|--| | A ₁ | 0-10 | Sandy
Clay-Loam | Mod sub-
angular, mod
organic matter. | Nil | 7/10 | 7.8 | Tilled multiple times,
soil slaked and
consolidated from
irrigation and rainfall. | | B ₁ | 10-45 | Medium-
Heavy
Clay | Moderate
angular-blocky,
strong cracking
when dry. | Nil | 2/10 | 23.1 | High shrink swell capacity, reservoir for water. | | B ₂ | 45-80+ | Medium-
Heavy
Clay | Weak angular-
blocky
structure. | Mod-
High | 0/10 | 3.3 | Roots 5-10cm max into
this horizon, layer sets
the depth of the root
system. | ## **Summary Table:** | • 1 • • • | | |---|----------------------------| | Parameter | Measurement & Description. | | Effective Root Zone Depth (cm) | 45cm, 50cm max. | | Available Water Content (mm) at 40 kPa soil suction | 34.2 mm. | | Irrigation interval at 6mm/day: | 5.7 days | - 1. Shallow topsoil depth. - 2. Low organic matter in the surface horizon. - 3. Heavy clay subsoil textures. - 4. Dispersive subsoil, non-sodic. - 5. Low AWC from medium and heavy clay soils. - 6. Alkaline and calcareous subsoil with calcium carbonate (lime). # **SITE 2. MAL HOLM.** ## **Soil Profile Photographs:** **Soil Type:** Red-Brown Earth – Deep Phase. Duplex soil. #### **Soil Profile Description:** | Horizon | Depth
(cm) | Texture | Structure | Presence
of Lime | Plant
Root
Score
/10 | Available Water
at 200 kPa soil
(Sat) mm. | Profile Notes. | |----------------|---------------|---------------------------|--|---------------------|-------------------------------|---|--| | A ₁ | 0-10 | Coarse Sandy
Clay-Loam | Mod sub-angular,
mod organic
matter. | Nil | 8/10 | 7.8 | Tilled multiple times,
soil slaked and
consolidated from
irrigation and rainfall. | | A ₂ | 10-23 | Coarse Sandy
Clay-Loam | Mod sub-angular,
low organic
matter. | Nil | 5/10 | 10.14 | High shrink swell capacity, reservoir for water. | | A ₃ | 23-58 | Coarse Sandy
Clay-Loam | Mod sub-angular,
few plant roots
only. | Nil | 3/10 | 19.5 | High shrink swell capacity, reservoir for water. | | B ₁ | 58-90+ | Light Sandy
Clay | Weak angular-
blocky to massive
structure. | Nil | 0/10 | 0 | No plant roots, layer sets the depth of the root system. | ## **Summary Table:** | Parameter | Measurement & Description. | |---|----------------------------| | Effective Root Zone Depth (cm) | 45cm, max 58cm. | | Available Water Content (mm) at 40 kPa soil suction | 37.4 mm. | | Irrigation interval at 6mm/day: | 6.2 days | - 1. Deep topsoils with subsurface A_2 and A_3 horizons. - 2. Low organic matter within subsurface horizons from a lack of root development. - 3. Acidic topsoils. - 4. Dispersive subsoil, non-sodic. - 5. A₂ horizon soil structure. - 6. Nutrition management in well drained soils vs clay dominant soils. # **SITE 3. ROB SINGLETON.** #### **Soil Profile Photographs:** **Soil Type:** Red-Brown Earth – Deep Phase. Duplex soil. #### **Soil Profile Description:** | Horizon | Depth
(cm) | Texture | Structure | Presence
of Lime | Plant
Root
Score
/10 | Available Water
at 200 kPa soil
(Sat) mm. | Profile Notes. | |----------------|---------------|------------------------|---|---------------------|-------------------------------|---|--| | A ₁ | 0-12 | Coarse Sandy
Loam | Mod sub-angular,
mod organic
matter. | Nil | 8/10 | 9.36 | Minimum tillage, crop
utilising water
efficiently. | | A ₂ | 12-32 | Coarse Sandy
Loam | Structure tending massive, roots restricted. | Nil | 4/10 | 15.6 | Topsoil not providing efficient delivery of nutrients. | | B ₁ | 32-64 | Medium Clay
(sandy) | Moderate
angular-blocky,
strong cracking
when dry. | Nil | 4/10 | 21.1 | High shrink swell capacity, reservoir for water. | | B ₂ | 64-85+ | Medium Clay
(sandy) | Weak sub-
angular-blocky
structure. | Mod-
High | 0/10 | 0 | No plant roots, layer
sets the depth of the
root system. | #### **Summary Table:** | Parameter | Measurement & Description. | | | |---|----------------------------|--|--| | Effective Root Zone Depth (cm) | 65cm | | | | Available Water Content (mm) at 40 kPa soil suction | 46 mm. | | | | Irrigation interval at 6mm/day: | 7.6 days | | | - $1. \quad \text{Deep topsoils with subsurface A_2 horizons.} \\$ - 2. Moderate to high available water content based on topsoil depth - 3. Moderate to high available nutrient, with further improvement possible - 4. Low-moderate surface retained organic matter. - 5. A₂ horizon soil structure. - 6. Dispersive & sodic subsoils. - 7. Nutrition management in well drained soils vs clay dominant soils. # **SITE 4. ROB SINGLETON.** ## **Soil Profile Photographs:** **Soil Type:** Grey-Brown Clay – Lighter Phase. ## **Soil Profile Description:** | Horizon | Depth
(cm) | Texture | Structure | Presence
of Lime | Plant
Root
Score
/10 | Available Water
at 200 kPa soil
(Sat) mm. | Profile Notes. | |----------------|---------------|----------------------------------|---|---------------------|-------------------------------|---|--| | A ₁ | 0-10 | Light Clay
(sandy) | Mod sub-angular,
mod organic
matter. | Nil | 8/10 | 6.6 | Minimum tillage, crop
utilising water
efficiently. | | B ₁ | 10-23 | Light-
Medium Clay
(sandy) | Weak sub
angular-blocky,
weak cracking. | Nil | 4/10 | 8.58 | Topsoil not providing efficient delivery of nutrients. | | B ₂ | 23-60 | Medium-
Heavy Clay | Moderate
angular-blocky,
strong cracking. | Nil-Slight | 0/10 | 24.42 | High shrink swell
capacity, reservoir for
water, NO ROOTS YET,
high moisture. | | B ₃ | 60-90+ | Medium-
Heavy Clay | Weak angular-
blocky structure. | Mod-
High | 0/10 | 0 | No plant roots. | ## **Summary Table:** | Parameter | Measurement & Description. | |---|----------------------------| | Effective Root Zone Depth (cm) | 60cm | | Available Water Content (mm) at 40 kPa soil suction | 39.6 mm. | | Irrigation interval at 6mm/day: | 6.6 days | - 1. Clay dominant horizons, no physical impedance. - 2. Lower AWC in comparison to a duplex profile with deep topsoil. - 3. Dispersive subsoil, non-sodic. - 4. Moderate surface retained organic matter. - 5. Poor drainage profile drainage.